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ABSTRACT
The subadditive sequences of operators which belong to a von Neumann
algebra with a faithful normal state and a given positive linear kernel are
considered. We prove the almost sure convergence in Egorov’s sense for
such sequences.

Introduction

This paper is devoted to a presentation of some results concerning strong limit
theorems in non-commutative probability which the authors proved in recent
years. The first results in this field were obtained by Sinai and Anshelevich
[20] and Lance [17], who showed almost sure convergence in Egorov’s sense [20],
[17], [19] in an ergodic theorem for transformations of von Neumann algebras
(earlier Kovacs and Sziics [15] showed mean convergence in this case). During
the last 10 years numerous results were proved, the main part of which were
given in R. Jajte’s monograph [12]. The first matter we consider in this paper
is as follows. Let {z,} be a superadditive sequence, i.e. Tpym > Zn + a™(zm)

where « is a positive linear kernel in M,p o a = p (see [12]) and the number
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sequence p(n~'z,) is bounded. It is necessary to consider almost sure and mean
convergence of n~'z,. This question is solved in section 1 under the additional
condition sup, n~}||z,|| < +0o. Note that in the case when the state p is a trace,
this result was proved earlier by Jajte, but in the general case the research of the

1z, is more difficult.

sequence n-
In section 2 we consider convergence of supermartingales, i.e. sequences {z,} C

M of selfadjoint operators satisfying the condition
‘Pn(-fn) =Ty, ?n(zn-l-l) 2 Tp,n = 1721“'

where ¢, is an expectation from M on some von Neumann subalgebra M, with
respect to p and also M; C M, C --- C M, C ---. Under natural conditions we
obtain mean and almost sure convergence. The proof of this result is like that
of the superadditive ergodic theorem from section 1. When the state p is a trace
this result has been previously obtained by Cuculescu {5] (see also [2]) but the
method of these works does not transfer to the case of a general state.

In section 3 we consider majorant convergence in ergodic theorems for trans-
formations of von Neumann algebras. We assume the state p is a trace and prove
for a selfadjoint operator X affiliated with M and X € Ly(M, p), p > 1 (see [24])
that there exists {¥,}32; C Ly—(M, p), € > 0 (no matter how small) such that

n—1
—Yp S 0n(X)—(X)<Ys, n=12,..., where on(X)=n""! Za"(X)
£=0
(see notation above), and
X = Jl?goan(X).
From there it is easy to see the ergodic theorem for the average
ny—1 ne—1 ) .
nitongte.ong? Z Z ay' ... o)k (X)
l'1=0 i;=0
where ay,...,a, are positive kernels in M,poa; <p,j =1,2,...,x.

The authors are grateful to the reviewer, who points out an elegant work of
Dang-Ngoc [7], in which almost sure convergence for bounded martingales is

proved.
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1. Superadditive Ergodic Theorem

Let M be a von Neumann algebra acting on the Hilbert space H and let p be a
faithful normal state on M defined by the separating cyclic vector &. Let a be
a linear mapping from M into M satisfying the next conditions:

(1) aMy C My, ol)=1, pa(z)) = p(z)

where M is the set of positive elements from M, 1 is the identity of M,z € M.

Denote the commutant of M by M’ and denote the space of linear continuous
(normal) forms acting on M' by M"*(M.) [8]. Every selfadjoint operator = €
M is associated with a Hermitian normal functional w, acting on M’, where
wz(B) = (B¢, &) for all B € M".

We shall denote the norm of the functional ¢ € M'* by ||¢|j;. Forz =2z* e M
put ||z||1 = ||wz]]1; it should be noted that ||z||; = sup|(zBéy, & )|, where B* =
B € M',—1 £ B <1, and therefore ||a(z)|li < ||z]).

We shall denote the norm of the operator z by ||z||e and the norm of the
vector z€p by ||z|2-

We shall denote 1/kS5}T'Y by o.(T;Y) where T is a linear operator acting
on the Banach space L,Y € L. If it does not lead to a misunderstanding we omit
the term T and write .(Y). We say that the sequence {Y,}52; C M converges
almost surely (a.s.) to Yy € M if for every € > 0 there exists a projection E €¢ M
such that p(1 — E) < ¢,limpo0 ||E(Yn — Y5)El|leo = 0 [25]. We say that a
sequence {,}32; C M of selfadjoint operators is superadditive if there exists a

linear map « such that (1) holds and

2) Tntm < Tp +a"zy, wheren,m=1,2,....

THEOREM 1.1 (see [12], [16], [10])): Let {2,}5%, € M be a superadditive se-

n=1

quence and
3 sup||za/nfleo = C < +oo.
n>1
Then there exists a selfadjoint operator zo € M such that
azg =29, lim ||za/n— 2ol =0;
n—o0
Zn[n converges a.s. to zg.

In order to begin the proof let us state the following lemmas:
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LemMma 1.2 ([9]): Let a be a linear map from M to M satisfying (1). Then
there exists a linear map o' : M' — M’ such that
(i) o/(M5) C ML, a'(1) = 1,(a'(B)és, o) = (Béo, &) for every B € M.
(ii) (az)Bey ¢, ) = (za'(B)éo, &) for all z € M,B € M'.

Let o' be the operator acting on M’ constructed in Lemma 1.2 from a. Then
((a')*(wz))(B) = wa(z)(B) where z = z* € M,B € M’ and the operator (a')*
transforms (M')} into (M')}.

LEMMA 1.3 (see [12]): Let {wn}3%; C M be a superadditive sequence and
y,,=1/mZ(w,c—aw,<_1), weg=0, m=12,....
x=1

There exists a sequence {z,}5%, C My such that
4) nap(a,ym) 2 wn — m™1z,, 1<n<m

and sup,,> |lym{l1 < co.

LEMMA 1.4 (see [14], [12]): Let {z2}3%, C M, be a superadditive sequence.

There exists a positive normal functional & on M' such that

l@lh =7 = "lin;op(xn/n), o((')*,®) 2 n" w,,, n=12....

Proof: Let {yn}5%,,{2n}3%, be constructed by Lemma 1.3 from the sequence
{24}2%;. The functionals w,, are uniformly bounded and have an accumula-
tion point vq in the o((M')*, M') topology. It follows from inequality (4) that
oa((a')*,v) > n"lw;, > 0. Then

all = vo(1) = limlm? 3 (e, = waes D] = lim m; plzm,) =7
k=1

where wy,,,, converges to vg. From the uniqueness of Takesaki’s decomposition
[22, p. 127] we have

(@) @)a = (@) (@)Y (%0))n) + ¥nyes
where voc = (&) (")) (#0))s))n; ¥n0 = (¥0)n and (¥)a((v)s) are the

normal (singular) parts of v. Then

(5) (@) (mo)a(1) = Y llvailh v

=0
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and the series @ = L2,y i converges in the norm || - ||;. Moreover
n—-1 1 n-1

6)  noa((@)h@) 2 ) > (@) v = (@)Y (#0))n 2 we,.
i=0 £=0 =9

From (6) and (5) it follows that ||@|| = 4.

LEMMA 1.5 (see [6]): Let v be a normal Hermitian functional on M'. Then
ox((e')*,v) = # in || - ||, where ¥ = Ev and E is the projection on the (a')*-
invariant points in M, such that the range of the complementary projection is
the closure of {(I — (&/}*)(M)}.

Proof: Let K be the completion of the real linear space of all selfadjoint elements
of M under the norm || - ||, and let K be the complexification of K. From
Kadison’s inequality [13] (az)? < a(z?), it follows that the unique extension of
o on K is a contraction in K. Since K is reflexive, it follows from Corollary 8.5.4
(6] that

on((a)*,wz) Il wgry whenn — oo,
and from inequality ||z|]; < ||z||2 correct for z = z* € M it follows that
on(a,z) I g,
Corollaries 2 and 3 (8.5 [6]) finish the proof.
Proof of Theorem 1.1 (Norm || - |}; Convergence): The sequence
{zn — non(a,z1) 5%,

is positive and superadditive.

By Lemma 1.4 there exists a normal Hermitian functional @ such that
on((e')",®) 2 n7ws, —on((e')",wz,) and @]l = lim p(zn/n) — p(31).

Let & be a limit of ¢,((a')*,®) in the || - ||; norm. By Lemmas 1.4 and 1.5 we
have

llwzp o =@+ ws, |l Sllwe,,. — onl((@’),wz,) — aa((a’)*, @)1
+lloa((e),@ — @)l +lon((a')*,wzy )l = 0.

From (3) it follows that 0 < & < 2cow;. By theorem 1.4.5 [8] there exists £ € M

such that & = w;, or ||2n/n — Z0 — £1]l1 = 0 when n — co.

Let us prove a.s. convergence.
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THEOREM 1.6 (see [9]): Let {A,})_, be a finite set of selfadjoint operators from

M, {en}), afinite set of positive numbers. FEN_; e || Anll1 < 1/2 then there
exists a projection Ex € M with p(En) > 1~ ZN_ ;' ||An|l1 and such that

|IENOm(An)EN||oo £ € form,n=1,2,...,N.

In the proof of the theorem we use finiteness of this set of selfadjoint operators.
We also note that in this theorem A, need not be positive as in [9].

LEMMA 1.7: Let {ws}S%, be a superadditive sequence, {y,}32, and {2,}32., the
sequences of positive operators constructed by Lemma 1.3. Then

(M wy > (K = t)ox—s(weft), wherel1 <t < &;

8) non(we/t) 2 (n — k)on_x(ox(we/t)), wheren > k2> 1;

n-1

nop(ys — weft) + Z ot (weft)+ 57z,

i=n—t

(9) n—1
> wy — non(we/t) + Z o' (weft) > 0, where1 <t <n<s;
=n-t
n-1 k-1 .
Koa(On(ys —we/t) +57 2+ D a'ys+ D oi(aa(we/t))
(10) =0 i=Kk—t—n

> wx— (K=t —n)ox_t-n(on(we/t)) 20, where1 <2t <2n< K <s.
Here oi(z) = oi(a, z).

Proof: Inequalities (7) and (8) follow from positiveness of the operator w¢ and
(9), (10) from the inequalities (7), (8) and (4).

LEMMA 1.8 ([3]): Let z € M. Then

n
lloa(z — oa(@Dlleo < 2 llellon  where & > 2n.

We shall denote limy—voo 0x(Zn) in the norm |} - ||i by .. The existence of
the limit follows by Lemma 1.5.
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LEMMA 1.9: Let {2,}32, be a superadditive sequence. Then

Zam/n 2> 2 wheren,m =1,2,....

Proof: We have from superadditivity
Tam 2 Tm + 0Ty + - + alr—mg

Then Epm/n 2 Em.

LEMMA 1.10 ([18]): Let ¢ = z* € M. For every € > 0 there exists y = y* €
M, |lylleo < 3||zlleo such that ||z —yl|2 < € |lox(y) — Zl|loc — 0 as & — oo, where

% =limo,(a,z).

Proof of the a.s. convergence: Let {Vo = zn —non(21)}52,limpneo p(Vayn) =
7. There exists a subsequence {V;,}32,, such that sup,>,, ||Ve,/te — Vs/s|li <

2-2t where 441 = m - t; for some natural number m(€). Then
(1) p(Vee) 2 B |IVe/slls — supl[Va /ti = Va/slly 2 v =27
32t

We construct sequences {Y,}52, and {Z,}22, by Lemma 1.3 for {V,,}32,. Let

ne = max{te, [(p(Ve) - 27297+ 1}, s = max{ne, [0(D_ Z:) - 272) "] +1}.

=1

Then for s > s}, > t; we have

72 p(Y,) = p(Va/s) > v — 272,

nyg -1

e ¥ @Vt <27 g™ Yo a(Z) <27

t=n,—1; =1

It follows for s > s that

llon, (Ys = Vi, /te)lh

ny—-1 e
< low(e =Vt +1fne Y ai(Vifte) +1/(s-n) Y Zill
f=n¢—1 =1
ne ng~-1 ]
HI/e )Y Zlh+lL/me S @iVl <527
=1

t=ns—1t;
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By Lemma 1.10 there exists a sequence {z;,}2, such that

llz1,elloo < 3ll2alloo; 21 = 21,llz S 2725 [low(e 21,e) = 21|00 < 27
when k — oo, where £; = limg—o o(21). We choose {V{,}32; such that

Velloo < 3l1Vaelloos Ve = Viyll2 £ 272 llow(Vi /te) = Vielloo — 0

where V,, = limg—oo 0x(a, V,/te). There exists «j such that, for & > «j, the

next inequalities are correct:
lox (Vi /te) = Villoo <2725 Jlow(a, 21,0) — &1lloo < 272,
14
Put

£y =[(2y-ne- 27371 41,
k1 = max{2n; + L; &5k} +n1 +t1;3Velloo - (01 +11) - 2737 + 8y + 1y + 1},

and for £ > 1

ke = max{2ny + 1;k¢-1; K7 ; Ky + ne + Lo

((31Velloo - (B + ne) - 2_2[)—1] +te+ne+ 1},
K1+1
se =max{r +1,8,[( ) p(Z:)7" - 2] +1}.
=1

Let 1 > ¢ > 0 and £ = [log, /, €] + ¢1 where ¢; is large enough. Then

Y- 2C@NVe it = Ve [t + - Vi /tmtr = Vi [l

28 m={
Koy ny—1 i
+llon (o, (Yo, = Vi /t))lls + 1/se Y, p(Z:) +1/xell Y 'Y, Iy
i=1 =0

+ 2 lz1 — z1,l13) < €/2.
We note that

Vi /tmar = Ve [tmllt Ve /Ema1 = Ve [tmll1-
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Let N > k¢,. We construct a projection Ex by Theorem 1.6 such that

(1-Bn) <3z, IIBacp((Vi,/te =V, /t))Enlw < 27%,
N
”EN Z(fftmﬂ/tn&l - Vtm/tm)EN“oo < 2_13

m={

(12)  IBnop((a1 = 21,0)")Enllee < 277
HENGp(On, (Yo — Ve [te)) ENlloo < 274

Ke41 ne_y

EN(1/3¢ Y Zi)ENllo <274 IEn(1/Ke Y, @'Ye)Enlleo < 275
i=1 =0
Z:KO,...,N; p=1,2,...,N.
Let F be a weak accumulation point for {E,} N>x¢, and let F = fol AdF) be a
spectral decomposition for F,E = f11/2 dF\.
Then E < 2F; (1 — E) < 2-¢/2. By the inequality

limsup |[ENzEN||oo < 6
N n>N
it follows for positive X € M that

|EXE||oo = || XM2EX?||oo < 2| XV*FX?|| oo < 26.

For k¢ € k < K441 We have:

[|E(zx/& — 20)Elloo < ||E(zx/k — 0x(21) — 20)Ellec + [|E(0x(21) — £1)Elleo
K—1lg—ng

< ||E(Vi/& — _‘—K‘_U’k—tt-m (0n (Ve /1)) Elloo

ty —
(13) +IB= 20ty (0 (Vee /1)) Bl

+|Eox(z1 — 21,0 Elloo + ||E(0x(21,6) — 1) E|oo
+ “E(an—it-nt(am(vtt /tl)) - iO)E”OO'

By inequality (10) the first term is not more than

ne—1
IE(@u(on (Yo = Ve /1) + (5 3) " Ze + k7 ) @'Y,
(14) =0

k-1

+670 Y @l (on (Ve /1) Elloo-

I=Kx—t~n,
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From the next estimates
ox((Vi, /te = Vi [10)?) 2 (0x (V5 [te — Vi, [te))?

and

x—1

0<k? Y ai(on(Va/t0)

t=x—t;—n;
te—ng
Oty (am (Vtt /tt))

x —
= ou(Va fte) -
—_tp -
< x(One (Vi /1) = Vi fte) — 2 e (Tne (Vi [te) = Vi [t2)
O x—te—ng(Tne(Vie fte — Vi [12))

k—ti—n

+ 0x(Var te = Vi fte) - ——
tl+mf’tl
K

IS K—ti—ng
A L

(0',;—1, —ﬂt(Vt: /tl) - f,'l) +

2, 1 N
< 20e(1/5 + 1/(s = ne = ) Valloo + 2272 + LTt

K—1t— :
+ 0u(Veete = Vi [t0) = ==t 0 ty—n (Vi fte = Vi [te),

it follows that
k-1

(15) B Y o(on(Va/t))Ell < C2-27%,

i=Kx—t;—ny
where C; is sufficiently large. It follows from inequalities (12) and (15) that the
value of (14) is not more than Cj - 2. The second and fourth terms are not
more than 27, It follows by inequality (12) that the third term is not more than
2.27%, Let us estimate the fifth term, which is not more than
”E(O‘,;-:, —m(am (Vft /tl) - Vtt ))EHOO + ”EUK—Q -nz(Vil - thg )E”w
+ ”E(”K'-it—ﬂt(vti) - f"t)E“w + “E(f,!t - iO)E”W

2n - ~ - -
< e WValtllen 4227 + 1B Y (Vo ftoss = Vis 1) oo < 627
”2>t

We used inequality (10) and Lemma 1.9. It follows that 1:’¢, 1 #0. Thus the value
of (13) is not more than ¢; - 2~¢ for some constant c3 or
|E(zx/& ~ £1 4+ $0)E|joc =0 ask—o00. B

A further extension of Theorem 1.1 to the case of connected amenable locally
compact groups may be found in [11].
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2. Convergence of Supermartingales

Let M, M', M, &, ||-|| be as in section 1. Let {M,}52, be an increasing sequence
of von Neumann subalgebras of M and M, = (U3, M,)", where (U3, M,)"

is the bicommutant of U3 ;M,. Suppose also that there exists a conditional
expectation pn : M — M, with respect to p for n = 1,2,.... Let p}: M, —
(M,). C M,, where (M,). is the predual of M, and (¢}(w))(z) = w(pa(z))
where w € M,,z € M. 1t follows from the definition of ¢}, that

P Pm = ‘px'nin{u,m}) where n,m = 1,2,....

A sequence {£,}32, of linear Hermitian normal functionals on M is called a

supermartingale if the following conditions are satisfied:

(1) sup,>y |lénll < 0o,

(2) ¢:(£n) =£n, "P:(Erﬁl) 2laforn=12,...

A set {£:}ier of linear Hermitian normal functionals is called absolutely contin-
uous if for any decreasing to zero sequence {pn}32, of projections from M

sup|éi(pn)| — 0 when n — oo.
i€l

THEOREM 2.1: Let {£,}5%, be a supermartingale. The following statements are
all equivalent:

(i) the set {€n}2, is absolutely continuous;

(31) the sequence {£,}3%, converges in the norm || - ||; to §o € (Mo)s;

(iii) the sequence {€,}3%, converges in the o(M*, M) topology.

If one of the conditions (i) — (iii) holds, then for every ¢ > 0 there exists a
projection E € M such that (1 — E) < € and

i‘;% (I¢¢n — €)@} - p(2)7") = 0 when n — 0o
:EE-'.ME

if we regard 0 - (c0) = 0.
COROLLARY: Let {,}32, C M be a sequence of selfadjoint operators such that
(,Dn(.’tn) = Tn, ‘Pn(zn+l) 2 Zp.

If supl|zp)jeo < +00, then the sequence z,, converges a.s. in M.

To prove Theorem 2.1, we need some preparation. Let ¢}, be the mapping
constructed by Lemma 1.2 from the conditional expectation ¢y,.
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LEMMA 2.2: The mapping ¢!, is a conditional expectation on some von Neumann

subalgebra N, with respect to w1 and

N, C Nut1, wheren=12,....

Proof: It follows by Lemma 1.2(ii) that ¢}, is a projection, ¢}(1) = 1 and
w1(ph(a)) = wi(a) for all a € M'. Let P, be the orthogonal projection on
R, = {M,&}~. Then p,(A)R. C R, for A € M and ¢|,(B){ = P,(B¢) for
B € M’ since

‘Pn(A)V’n(X)EO = pa(Apn(X))€o = Pa(Apn(X)éo),
(Xéo,pu(B)Y &o) = (pn(B*)Y" X &, 60) = (Y pn(X)éo, Bo)
= (PuX &0, BY &) = (X &, PnBY &),

where X € M, Y € M,. Further ¢! ,(B)p\(A)o = Pa(B - ¢, (A)&), and
from ¢!, (B)t = P,(B¢) it follows that ¢!, (B - ¢},(4)) = ¢, (B) - ¢}(A) where
A,B € M'. 1t follows by normality of ¢/, that ¢, (M') = ker(I — ¢!,) is weakly
closed, i.e. N, = ¢},(M') is a von Neumann algebra. From the Cauchy-Schwarz
inequality it follows that ¢/, is a projection of norm one, hence ], is a conditional
expectation from M’ on the von Neumann subalgebra N, with respect to wy. It

is easily seen that N, C Ny, wheren =1,2,.... |

LEMMA 2.3: Let £ be a linear normal Hermitian functional on M. Then

o) = vo()lli = 0 when n — oo,

where q is a conditional expectation M on My with respect to p.

Proof: For every b = b* € M' we have ¢, (ws) = wy (3). It is known that
¢".(b) converges in || - ||l2 to @o(b) where @o is the conditional expectation on
(Un>1ML)"[I]. Since z = z* € M we have |lpn(z) — @o(z)||2 = 0 when n — oo
and ¢/, (b) — ph(b) weakly for b € M’, i.e. @y = Po. Since ||b]ls < ||b]|2 for
selfadjoint b € M’ it follows that

lim |[p;(ws) —@p(ws)ll = lim [l@n(b) — wo(B) =0. @
n—o0 n—oo0
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THEOREM 2.4: Let {£,}52, C M, be a sequence of Hermitian functionals and let
{2}, be a sequence of positive numbers with e, < 1 and £ 67} ||¢all1 < 1/2.

—_ n=1

There exists a projection E € My such that
o o]

p(E)21-2)" €7 [l€alln
n=1

and |€.(0k(2))| < enp(z) forz € EME, 2 2 0; n,k=1,2,---.

Note that it is essential in the proof of this theorem that the sequence of

subalgebras { M, } increases. We also note that in this theorem £, is not positive.

LEMMA 2.5: There exists a set ) which is ||-||1 - dense in the space of all linear
Hermitian normal functionals, such that for £ € ) we have

sup [(é(pn(2)) = €(wo(2))) - (p(2)) 7! = 0.
zeEM

z20

Proof: Let § > 0. There exists by Lemma 2.3 a number Ng such that
len(ws) — polws)]lh < & for n > Ng.

Let -
O = wp— @}(ws) + Y 27PNy pn(ws):

n=1

Then ||& —w¢||s < 8. Since |(bz&s, €o)| < ||bllocp(z) for b =b* € M',2 > 0,z € M,
it follows that

il;r;!(‘/’?v(@) — oo @N@N(p() " < [Ibllw2” ¥ 50 when N—oco. B
zE—M

Proof of Theorem 2.1: The sequence {£,}32, is bounded in M*. Hence it is
relatively o(M*, M) compact. Let {£, }er be a set o(M*, M) — converging to
o € M*. Since @(&n,) = &n, it follows that ¢3(&) = & and & is a Hermitian
functional. It follows from the fact that ¢;(£,,) > €. when n, > £ that

3) we(§o) 2 € for £=1,2,---.

It follows from (3) and (2) that
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(4) 0 < pa(Pns1(bo) — &) < wu(6o) — &n.

Let £y be some limit point of the set {£,}7%; and let {£_,}yer’ be a net which
converges to £). From the inequality

0 < i(eh,(6) — ny) = wi(E0) — ¥i(En,,)

it follows that ¢};(£0) > 7 (&) and also 7 (£) < ¢7(€p) so that

&) p1(éo) = v2(6o)-
Thus
(6) [lpn(€a) —&nllh — O when n — oo

because by (4) it follows that

N (€o) = énllr < llpm, (€o) = n, llt = €0(1) — £a,(1)

when N > n.. It follows by (4) and (6) that ¢;(&) € (Mp)a.

(i) = (ii). The sequence {£,}32, is relatively o(M,, M) compact by ([20] p.
149). Let {£n,}er be a net o(M,, M) — converging to o € M.. It follows by
Lemma 2.3 and (6) that

€n = &oll = lln — pa(€o)ll1 + llpn(o) — &olls = 0 when n — co.
(ii) = (ili) This is obvious,
(ili)=> (i) This follows by weak sequential completeness of M, ([22] p. 148). Let
¢; be a natural number such that when n > £, we have |lp%(£o) — &nlls < 272

Let wy = E (pnbo) — &n — (21(0) — Pr(€nt1)))-

n=4{,
It follows from the positiveness of the terms in the series and (6) that

llwell < (w2, (€0) — £e)(1).

Besides, for £ > £; we have

-1

Piwe) = Y (Pn(i) = €n) — Pr(En) + @h(€ns1)) + 97(60) — € 2 2 (bo)

n={;

(7 = {e.
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Let 5((,") = T2, &, be a decomposition by elements from the set 0 which is
constructed in Lemma 2.5, where || «||1 < 272%+! when x> 2. Let € > 0 and
Ko > —log%5+3 . Then

> @ llwnlls +2- 2% - [lo,nllt) <

n=kKg
Let § > 0, ty = [—logy 6] +2,n0 = max{£x,,t;}. There exists by Theorem 2.4 a
projection E € My such that p(E) > 1~ ¢ and

sup  (€o,x(pn(2)) = &o,x(0(2))) - (p(2)) ™" <277,
=eEME

N,

(8) sup |(we(2))|- (p(2))? <27%  fork>&Kgandn=1,2,
zEEME

z2>0

sup (|(éa — €0)(@)(p(2))™) < sup (|(én — &0)(n(2))] - (p(2))™")
zEfZI:;!E zEf'ZIl:E
9 + sup (|(¢o(pa(®)) — o(2))I(p(2)) 7).
a0

The second term in (9) is not more than

. (I(; £0,¢)(on(2) — po(2))|(p())™")

z20

oo
+ Y sup (lo,(eal(z) - po(=))l(p(z)) ™)
t=ng z€EME
z2>0
u - 6
< sup (D lea(a) — @o(2))l(p(=)) ™) + T
s€EME 4
z20
It follows from inequalities (7) and (8) that the first term is not more that §/4.
We have by construction that

no
An= sup (I() &0,0)(pn(=) = 0o())l(p(z))") — 0,
z€EEME =1
z20
when n — oo. There exists ny > ng such that A, < §/2 when n > n;. Hence

the value of (9) is not more than §, when n > n;. Thus the statement of Theorem
2.1 holds. |
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3. Majorant Ergodic Theorem

Let M be a von Neumann algebra with a faithful normal tracial state 7, and let

« be a linear positive normal mapping M — M such that

1) a(1)<1; 7(afz)) < 7(2)

for all x € M. The mapping « has a unique extension to a linear continuous op-
erator (which we shall also denote by ) from the space Lp(M, 7) into Ly(M, ),
where L,(M, ) is the space of 7-integrable operators affiliated to M ([19], [24]).
Let 0n(a, A) be as earlier. It follows by reflexivity of L,(M, 7) [24], that o,(a, 4)
converges to E(A), where E is a projection on the subspace of a-invariant opera-
torsin Lpy(M,7)(1 < p < o0). It is known (see [24]) that o,(a, A) converges a.s. to
E(A). The sequence (multisequence) {4}, ({An1,nz,...,nm}Poy,i = 1,m)
is called (0)-convergent to Ag € Ly(m,7) when n(n;,i = 1,m) — oo if there ex-
ists a decreasing sequence of selfadjoint positive operators {Bn}3%, € Ly(M,T)
such that inf, B, =0,~B, < A, — A < B, forn=1,2,...

—B, < A,, ..n, — Ay < B,, n= minn;).
( 12" %m ity

i=l,m

THEOREM 3.1: For every positive operator A € Lpy.(M,7) (1 < p < 00,6 > 0)
there exists B € Lo(M, 1) such that

|Blly £ Cp.ellAllp+e; on(a, A) < B, forn=1,2,...

where C, . is some constant.

Proof: Let C € L,(M,7), C > 0. By Theorem 1.2 [6] for every A > 0 there
exists a projection ¢ € M such that

(1 —q) < 2X717(C),

qoe(a,C)g € M;|lgoe(a,C)gllc < A, for£=1,2,....

Denote A « X[y,4+00)(4) by A(7), where x.(z) is the indicator function of the set
e. There exists a projection ¢; € M for A = v/2 and C = A(y/2) such that

(1 —q) <4 '7(A(/2)); @, A(7/2))q € M;

lqroe(e, A)arlloo < llaroe(a, (A = A(v/2))a1llos + llgroe(e, A(v/2))rlloo < -
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Let v = ||Allp41€™, for n =0,1,.... There exist projections ¢g» € M such that
gnoe(a, A)gn € M, |ignoe(a, A)gnllco < Tn, for all n,£=1,2,... and also

7(1 - ¢a) < 477 ' 7(A(7a/2)).
Let go=1—¢qo; gn =gn-1Agn,forn=1,2,.... Then
7(9n) S 7(1 = gn) < 47n - T(A(72/2)).
Let fn =gn-1—9gn =9gn-1Agn,  fo=go. Then
Yo < llanoe(e, A(ta/2))anlloo = lloe(e, A(1a/2)) b aulll,
< lloe(, A(1n/2))* fallze = | face(cts A(vn/2)) falloos for all £,n=1,2,---.
Let 6, = n?. Then

or(a,A) < 2gga(a, A)go + 2fooe(a, A)fo < 27 - fo + 2900¢(a, A)go,

2
2goas(c, A)go < (14 671X + Se)vifi + ',El(l + 67 Ng10e(a, A)gs,

n n
I +67)gn-100(, A)gn-1 £ L1+ )1+ bns1)7m " fn
n+1
+ I (14 & " )gnoe(er, A)ga.

Thus

N
oe(@, 4) < 2vfo + Y M2 (14671 + 6mst1 V¥ fm

m=1

+IZP (14 67 )gnoe(a, Agn, for £=1,2,---.
Denote ¥, (1+ 67 )gnoe(a, A)gn by Bn e and the sum of the two terms in (2)
by By.
Let us show that By € Ly(M,7),||Bnllp < Cp,cllAllp+e- We have

N
IBNIE = 7(27 fo + ) (Mhnas(1 + 6ms1))" 7 - fm)
m=1

N
< 228 + 2%23% 01 (g0) + Y (m + 2P ™1 (gm) - 5,

m=2
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o«

(gm) < 475 T(A(Tm-1)) 475" Y. 17X wesa)(A))s

f=m~1

Z‘Y‘I‘FIT(X{‘H,%}J(A)) Ser (A)) € LP+!(M3 T)& when P2 1.

=1

It follows that

1B < 2728 + 3734

o0 min{N,i+1} .
+4) Y, (m+ 2™ |l (X i (4))
i=1 m=2
m .
< Cl'Yg + ep+142(i + 4)2p+lep(|—1) ‘ 'Yg : T(x[“h'-h‘Yil(A)) =D,
i=1
since
min{N,i+1} C
Y (m+2P<(i+4)P < Tzed"—‘) for s =1,2,...;

m=2
then D is not more than the next value
w .
C11g + C3(1/70)* E 'Ygﬂe(ﬁe)('_l)T(X{‘n‘-xwa](A))
=1
< 017(’), + C4”A”;+c = Cg,e"A":+c’

Then ||Bnlp < Cp,c||Allp+e Where Cp . does not depend on N and A. The se-

quence {Bn}%., is increasing and norm bounded in Ly(M,7). It follows that
there exist

Be Lp(MyT)7 B 20, "B“P < CP»!“A“P-i'e’ B= b}l_r’noo Bn.

We have By < £2gnae(a, A)gn.
Since ||AB|lp < |All¢ - |Bllr,1/q + 1/r = 1/p it follows that

lgnoe(a, A)gnllp < llanoele, Allpsellgnlls < lloele, Allp+elignll,

where s’ = (—(p + €)™ + p~1)~1. It follows that [|[Bn,ll, — 0 when N — oo.
Besides o¢(a, AIBN + BNy < B+ By When N — oo we have oia,A) < B.
|
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THEOREM 3.2: Let A € Lyy.(M,7) where1 < p < 00,6 > 0 and A = A*. Then
on(a, A) is (0)-convergent in L,(M, 7).

Proof: Assume that A > 0. Let A = X[g,,,00)(4) - A Where S, is a positive
number, 8, T oo, such that |Am|lp+e <27 ™ when m > 2. Let

Cm=A—An~E(A—An) € M.

Then
0n(@,Cm) = 0n(,(Cn — 0k(a,C)) + on(a@, ok(a, Cm)),

22| Callen = 0n(2,35(Cm)) < 900 Com) < = llomlloo + n(at e(, Om).

Since ||ox(a, Cm)|lp+e — 0, there exists a number «(m) such that
lox(a, Cm)llp+e <2~™"%, when k > k(m).

By Theorem 3.1 there exists Bj, € L,(M, ) such that
Bl >0; |Baly <Cpe2 ™3 —2-")_BY < g(a,Cm)<2 ™) + BY,
when

n > n(m) = [2"k(m)||Crll] + 1.
By Theorem 3.1 there exists B}, € L,(M, ) such that Bl >0,
—Bly < 0a(@, Am) — E(Am) < B, | Blpllp S 2- Cpe- 27,

When n > n(m) we have

_2—(m+3) - B;I'; - B:'n < an(a’A) - E(A) < 2—(m+3) + B::l + B:n

Let

n(1)

B = Z a.-(a, A) + B,,(l) when £ < n(l)

i=¢

and
o0
By = 2(2‘('"+3) + B, +B,,) whenn(x) << n(k+1).

Then

B >0, Bi€L,(M,7), Bil0, —~By<oya,A)—(A)<Br. 1

Let M, 7 be as earlier and let a;,i = 1,m be a linear positive mapping from
M into M satisfying condition (1); E; is a projection of an «;-invariant subspace
in L,(M,).
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THEOREM 3.3: Let A€ Lyt .(M,7) (1<p<oo,e>0), A= A*. Then

11 n1—1 nm—1

i
— = Y ) abtaf aln(4)
MmNz m T it

is (0)-convergent to E, - -- Ep,(A) in Ly(M, 1) when £ — co.

Proof: Let us show by induction that for every selfadjoint operator
Ae Lp+¢(M ,T)

there exists a sequence {Bgm)}j'_i.l C Lyyepam(M, 1) of positive operators such
that BE"') } 0 when £ — o0 and

“B{™ <ot (0, 0tp, (amo1y -+ 01, (@1, 4)) ) = Bm -+ Es(4) < B{™

for all (€m,---,£1) such that miny<i<m {€i} > L.

When m = 1 this assertion is Theorem 3.2. Let us prove it for m = k.
There exists a sequence {BZ;I)};'; C Lyptes2n-1(M,7) by induction such that
Bg;‘l) >0; Bgfl_l) 1 0 when £ — oo and

_ 1 ny~—1 ng—1 ’ -
~B; 1)<;;---nk 1 2 Z,a < a*1(A)=E; - By (A) < BTV
1= ir-1=

when mini<i<k—; {€;} > €. Note that B(k D L 0in Il - llp4+¢/2%-1 morm.
Let {B, (k 1)}?21 be a subsequence such that

o0
k— k- k-1 k+1
@  BEY = BE ST IBE T et < 2- 1B e

i=1

By Theorem 3.1 there exists By € Ly, o+ such that
o6 (ar, BETDY < By |1Bellpaesar < Ch- 1B Vlpesmmr fort,€=1,2,....

It follows by (4) that the series By; = L2, B; convergesin Ly, /o#, Bt,1 | 0 when
t — o0 and o, (ax, B'7") < By1. Let Bys = By for £ < £< £441. Then

—Byy < —or,(ax, BLTY)
< ap (ax,0t,_, (k=1 04, (c1(A)) — Ep-1 - - - E1(A4))
<o, (an,B(K-l)) < Bya, if gxliri{e,-} > 4.
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There exists a sequence {B¢,3}§2, C Lyi./2 such that By3 | 0 when £ — co and
—Bys < ogclag, - ,00(a1,A)) — Ex -+ E1(A) £ B3
when £ > £. Let B = By3 + By2. Then
(B2 C Lyveppms B L0, €= oo

__ng) < ¢ (o, - (04, (@1, 4)) - +-) = Ex -+ E1(4) < ng)
for all (€x,---,£1) such that mim<ick{€i} > €. @

COROLLARY 3.4: Let a;, E; be as in Theorem 3.3 and
AeLpy.(M,r) (1<p<oo, €>0).

Then
ot (ar, - or(ar, A)---) = Ex---E1(4) - 0

a.s. when ¢;,i =1,k converge to oo.
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